
Liaison Journal of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 65

Identifying How Any Interface Elements Are Created

in The Gamemaker Engine.

Jibran Wafi Prawiko1, Normalisa2, Pradana Atmadiputra3

1, 2, 3Computer Science, International University Liaison Indonesia, BSD City, Indonesia, 15310

e-mail: 1jibran.prawiko@stud.iuli.ac.id, 2normalisa@iuli.ac.id, 3pradana.atmadiputra@iuli.ac.id

Abstract. A GUI, whether well or badly designed, is one of the most important requirements for any

video game. The role of a GUI is to present the player with their in-game character’s current status,

whether it’s the number of ammunitions of a weapon, the current active quest, or the player’s current

location within the game’s map. Creating GUI elements should be one of the first guides that are

taught after a GameMaker tutorial provides a guide on creating a camera object. The creation

process of a GUI element can be divided into two parts; its positioning and functionality. In theory,

simplifying the development process, in this case the algorithm, for creating GUI elements is possible,

mainly by categorizing every GUI element based on what they are presenting to the player.

Developers could then create the same algorithm for every element that falls in one category, thus

simplifying the development process.

Keywords: GUI elements, game development, functionality, positioning, developmental process,

simplification, categorization.

1. INTRODUCTION

Every video game released from the earliest

years has an element to indicate various statuses

during gameplay, whether it is the status of the

score, the status of health, the status of the current

level, etc.

This type of element is generally known as

a GUI (stood for Graphical User Interface). A GUI

is a layer of technology with which a user engages

that allows them to visually interact through things

like icons, menus, and other graphics (Walkme,

2022). Human interactions take place using pointing

devices such as a mouse, keyboard, stylus, or touch.

GUI examples include computer monitors,

smartphones, tablets, gaming systems, or other

consoles (Walkme, 2022).

The same can be said with its

implementations in a video game. GUI elements in

a video game take a digital form. A GUI in a video

game consists of many static elements (often as

objects) that display specific values to indicate the

current status of the player. It is an important factor

of any video game when looking at the lack of titles

which do not possess any GUI elements. Thus,

creating a GUI should be one of the core parts that

should be included in every game development

tutorial for a game engine.

Gamemaker Studio 2 has been one of the

most popular choices as a lightweight game engine

for independent game developments. And with

every Gamemaker Studio 2 tutorial having a

different developmental process, it will be difficult

to conduct small experiments in the project based on

the amount of knowledge gained at that point, with

the reasons of being afraid that those experiments

will affect their progress, and prevents beginner

developers from continuing to follow said tutorials.

one of those experiments may regard the creation of

an additional GUI element.

This research aims to create an algorithm

for creating any GUI elements in the Gamemaker

engine, regardless of whatever game is created in

the engine and also in whatever progress the

development is currently in. Developers should be

able to apply this algorithm whether their game is

near completion, or just started with their character

movement. Furthermore, the algorithm should not

break or affect other game mechanics to the point of

being unable to progress through the developmental

process when following a certain tutorial.

The scope of this research aims to cover the

essential parts and overall process of creating a GUI

element. This includes the positioning of the GUI,

mailto:jibran.prawiko@stud.iuli.ac.id

Liaison Journal of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 66

the different layers for each GUI element, what

events and variables should be included when

creating a single GUI element, and finally what

types of GUI element can be added into the game

using the algorithm. The last part also aims to detect

if there are any limitations of this research, in the

case of which GUI element cannot be placed using

that algorithm.

2. LITERATURE REVIEW

Gamemaker Studio 2 is a tool designed to

empower game developers and their team to make

new and innovative games as well as prototype

ideas in the fastest and most intuitive way possible

across multiple target platforms (YoYo Games,

N.d). The engine provides a built-in programming

language known as GML (stands for GameMaker
Language). It is a programming language that is

based around C, meaning developers who are

familiar with the following language could find

familiarity when working with GML.

The architecture of the Gamemaker engine

uses an event-driven programming paradigm. An

event-driven paradigm is a paradigm where entities

(objects, services, and so on) communicate

indirectly by sending messages to one another

through an intermediary. The messages are typically

stored in a queue before being handled by the

consumers (Sayfan, 2022).

In game development, events are discreet

moments in the game loop where things are made to

happen based on what you have programmed for

them (YoYo Games, N.d).

One of the events that can be found in the

GameMaker engine is the draw event. Draw events

are a type of event that govern what is presented on

the screen when running the game (YoYo Games,

N.d). The example would be when drawing an

object as a background for another object, such as

drawing a rectangular frame behind a score element.

There is also the camera event, which has

more universal implementations in the general game

development scope. In the general gaming term, A

camera is a player’s vantage point in a game, her eye

into the world (Kelly, N.d). It is a crucial mechanic

that is utilized for both 2D and 3D game

development.

The Gamemaker uses two types of tools

when creating the camera object, the viewports of a

room and the camera itself. Viewports are,

basically, little windows into the game world that

enable the player to see parts of a room, either scaled

or 1:1 depending on the game itself, and as such

they are essential when your game room is larger

than the display size. The cameras are what define

exactly what will be shown in each viewport (YoYo

Games, N.d).

Every 2D video game is built upon how

many pixels it has. A pixel is the smallest unit of a

digital image or graphic that can be displayed and

represented on a digital display device (Rouse,

2020). The number of pixels in a video game is an

important factor when developing GUI elements.

Since objects tend to have sprites attached

to them, the position of an object with a sprite can

be referred to in the sprite’s origin point. The origin

of point can be found within the sprites in

GameMaker, it acts mainly as a pivot point to when

an object is rotated into a different angle

(MashArcade, 2020). Although, the second role of

the origin point is as the value that is declared when

referring to the position of an object. Manually
declaring an object’s position from a script came

from the origin point of the object’s sprite.

However, the positioning of an invisible

object that contains no sprite must be set manually.

The position could either be the same as other

objects, or it could be set when the developer inserts

the object into the room.

Finally, the location of a GUI element is

also defined by its layer. Layering in a 2D plane,

whether related to game development or otherwise,

determines the order of objects in the game room.

The principles of layers in a 2D game, especially in

the platformer’s genre, are similar to the layers

found in art-development software. In a sense, each

instance of a created object should have their own

specific layers, whether the object has the same or a

different purpose than another object.

3. METHODOLOGY

Before identifying the methodology, it is

important to understand what type of GUI elements

are implemented in different video games,

specifically in various 2D games since Gamemaker

is an engine specializing in 2D game development.

This is done by analysing the interface from 3 of the

most popular 2D video games from each generation,

starting from the first year of the second generation

of video games in 1976 to the last year of the eighth

generation of video games in 2020.

For a summarization of the analysis, the

GUI element types of a video game can be classified

into 3 categories based on what kind of content or

gameplay status is shown within an element:

• A GUI element in the form of an image of

another object.

• A GUI element that shows a string or integer.

• A GUI element that shows a meter.

Liaison Journal of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 67

The GUI elements taken for this research

will be imported from existing titles of 2D games.

In which the titles selected depends on which sprite

set is available to download on the internet. Each of

the imported GUI elements shall use the mentioned

calculation formula to calculate their positioning,

and an algorithm for creating their functionalities

based on their category. All the code written in this

research will not be taken from outside references

(except for the camera object), though rather created

by the author itself.

Positioning

Since GUI elements are created as game

objects, the position of a GUI element in any game

should follow the camera object. The camera object

is an invisible object that should be placed in the
middle of the room, it has a fixed position that

moves consistently as the player moves. GUI

elements are objects that must act as an extension to

the screen, meaning the positioning of those objects

must be set in the camera object’s X and Y axis.

However, doing so will result in the engine

outputting the elements at the middle of the screen.

Figure 3.1.

This problem can be fixed by determining

the current resolution of the room. The room_width

and room_height are functions that will return the

value of the room’s width and height when called.

Both the first pixel of the room’s width and height

begins at the left-top corner of the room. The

camera’s position in the middle of the room is set by

camera_get_view_width(view_camera[0]) * 0.5

and camera_get_view_height(view_camera[0]) *

0.5 in the camera object. View_camera[0] refers to

the area of the previously-created viewport.

Figure 3.2. GameMaker’s camera object position

Determining the current pixel of the room

can be useful to measure the position of a GUI

element. If the initial position of the element is set

to the position of the camera object, then the image

above represents the positions of the elements when
set to the same x and y value as the camera object in

the middle of the room. Determining the distance

between the camera object and the room’s width and

height is required to create the simplified formula

for positioning GUI elements later.

A GUI object’s position should not extend

the limits of the screen set for the game. Unless the

object is scaled, this value and positioning limit can

still be calculated.

Figure 3.3. Sprite origin point

The first step is to calculate the horizontal

and vertical distances of an object sprite from its

origin point.

Liaison Journal of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 68

Figure 3.4. GUI object placement based on the camera

The second step is to calculate the distance

between the origin point of the object and size of the

room.

Figure 3.5. Simplified formula for GUI positions

It is now possible to determine the

positioning of the object without extending its

value. Above are the final calculations, where if it is

implemented inside the object of a GUI element,

then the object should be located at one of the four

corners of the screen.

The resolution of the room for this project

will be 1280px * 720px, the GUI elements imported

from the internet will all have different

functionalities and resolution for testing purposes.

Functionality.

The methodology of GUI functionalities is

identified by analysing what are the functions and

variables that must be included to create a GUI

element based on its type and role.

Table 3.1. Requirements to develop GUI functionality

The Imported GUI elements will take the

form of a sprite set available on the internet. This

function on the table above shows that the sprite set

should feature multiple sprites that handle the same

function, such as multiple meter-type GUI sprites

with different colours.

4. RESULTS

Sprite sets

All sprite set assets are taken from a

royalty-free source found in itch.io, they are all

created by the user Wenrexa, who specializes in

creating sprite sheets for GUI elements.

1. GUI sprite set 1 “GreenBlack”

Figure 4.1. “GreenBlack” by Wenrexa

2. GUI sprite set 2 “Hologram Interface”

Figure 4.2. “Hologram Interface” by Wenrexa

3. GUI sprite set 3 “Sci-Fi UI”

Figure 4.3. “Sci-Fi UI” sprite set by Wenrexa

Positioning

The events used to create the positioning of

the GUI elements are the same across all the GUI

sprite sets. The following objects from the sprite set

only feature two events:

- The Create event where it contains the

variables needed for the third chapter’s formula.

Liaison Journal of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 69

Figure 4.4. variable description inside create event.

- The End Step event where it contains the four

main positioning formulas in the last chapter.

Here are the results:

1. GUI sprite set 1 “GreenBlack” – Positioning.

Figure 4.5. The positionings of GUI elements from

the “GreenBlack” sprite sheet.

2. GUI sprite set 2 “Hologram Interface” –

Positioning.

Figure 4.6. The positionings of GUI elements from

the “Hologram Interface” sprite sheet.

3. GUI sprite set 3 “Sci-Fi UI” – Positioning.

Figure 4.7. The positionings of GUI elements from

the “Sci-Fi UI” sprite sheet.

Since the formula already simplified the

algorithm, developers only need to edit the variables

on an object’s create event that can determine the

margins. Furthermore, this also means that

developers do not need to place objects in the

correct order and/or position when editing the game

in the room editor.

Functionality

The events used to create the functionality

of the GUI elements are the same across all the

sprites in the GUI sprite sheet presented in the

previous part. The solutions for each of the

requirements mentioned in chapter 3 will be

summarized by using a table.

Table 4.1. Solutions for functionality requirements.

The results of implementing the same solutions

within each GUI element category are as follows:

1. GUI sprite set 1 “GreenBlack” –

Functionality.

Figure 4.8. The functionalities GUI elements from

the “GreenBlack” sprite sheet.

2. GUI sprite set 2 “Hologram Interface” –

Functionality.

Figure 4.9. The functionalities GUI elements from

the “Hologram Interface” sprite sheet.

3. GUI sprite set 3 “Sci-Fi UI” – Functionality.

Figure 4.10. The functionalities GUI elements

from the “Sci-Fi UI” sprite sheet.

Liaison Journal of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 70

From the results above, it is proven that

there is a possibility to insert functionalities of

different GUI elements in the same category by

using the same events and methods.

5. CONCLUSION

The results taken have successfully fulfilled

the aim and purpose of this research; to create an

algorithm that could simplify the process of creating

GUI elements in GameMaker, from the object’s

positionings and its functionality. The following

results have also concluded that GameMaker

developers only needed to edit the variables inside

the create event for changing the positions of

objects, and showed how the same formula can be
used and still output the same results across

different objects. Meanwhile, developers can edit

certain conditions with the same output in the step

event and draw events to change the functionalities

of objects.

REFERENCES

Kelly, T. (N.d, N.d N.d). Camera. Retrieved from

www.whatgamesare.com:

https://www.whatgamesare.com/camera.

html#:~:text=Camera%20A%20camera%2

0is%20a%20player%E2%80%99s%20vant

age%20point,scrolling%2C%20movable%

2C%20floating%2C%20tracking%2C%20p

ushable%20and%20first%20person.

MashArcade. (2020, 5 12). GameMaker Studio

2.3: Using Origins in Sequences! Retrieved

from www.youtube.com:

https://www.youtube.com/watch?v=HPJC

FfmI8v4

Rouse, M. (2020, 8 31). Pixel. Retrieved from

www.techopedia.com:

https://www.techopedia.com/definition/

24012/pixel

Sayfan, G. (2022, 11 8). Introduction to event-

based programming. Retrieved from

aiven.io:

https://aiven.io/blog/introduction-to-

event-based-programming

Walkme. (2022, 12 19). Graphical User Interface

(GUI). Retrieved from www.walkme.com:

https://www.walkme.com/glossary/gui/

YoYo Games. (N.d, N.d N.d). Cameras And

Viewports. Retrieved from

manual.yoyogames.com:

https://manual.yoyogames.com/GameMa

ker_Language/GML_Reference/Cameras_

And_Display/Cameras_And_Viewports/Ca

meras_And_View_Ports.htm

YoYo Games. (N.d, N.d N.d). Introduction To

GameMaker. Retrieved from

manual.yoyogames.com:

https://manual.yoyogames.com/Introduct

ion/Introduction_To_GameMaker_Studio

_2.htm

YoYo Games. (N.d, N.d N.d). Object Events.

Retrieved from manual.yoyogames.com:

https://manual.yoyogames.com/The_Ass

et_Editors/Object_Properties/Object_Eve

nts.htm

YoYo Games. (N.d, N.d N.d). The Draw Events.

Retrieved from manual.yoyogames.com:

https://manual.yoyogames.com/The_Ass

et_Editors/Object_Properties/Draw_Even

ts.htm

	REFERENCES

