
Liaison Journal Of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 1

Building a Comprehensive Content Management System with NPM,

Vue.js, Node.js, Postgresql, and Strap

Nashri Aziz Alhazmy1, Zahran Nurafi Chandra2, Pradana Atmadiputra3, Yudi Triyana4

1Computer Science, International University Liaison Indonesia, Associate Tower Intermark

Indonesia, Jl. Lkr. Tim., Indonesia, 15310

e-mail: 1n ashri.alhazmy@stud.iuli.ac.id, 2zahran.chandra@stud.iuli.ac.id,
3pradana.atmadiputra@iuli.ac.id, 4yudi.triyana@iuli.ac.id

Abstract. This article presents a content management system built using NPM v6.14.17, Vue.js v3.x,

Node.js v14.20.1, Postgresql v13.2.1, and Strapi v3.6.6. The system provides various functionalities such

as an Ongoing request and assessment dashboard, courier request management, meeting room booking,

stationery management, tools request management, and transportation request management. Users can

create requests for different categories and the admin can approve or reject requests. Additionally, the

system allows users to generate reports on stock flow, courier activities, and driver assessment. The

Master Data section enables users to view, search, and perform CRUD operations. The system offers a

comprehensive solution for efficient content management.

Keywords: content management system, NPM, Vue.js, Node.js, Postgresql, Strapi, dashboard, request

management, admin approval, report generation, master data, CRUD operations.
1. INTRODUCTION

In today's digital era, content management

systems (CMS) play a crucial role in organizing

and delivering information effectively. They

provide businesses and individuals with a

centralized platform to create, manage, and

distribute content seamlessly. This article explores

the development of a robust and versatile content

management system using popular technologies

such as NPM, Vue.js, Node.js, Postgresql, and

Strapi. The system aims to address the diverse

needs of users by offering features like request

management, administrative controls, report

generation, and master data management.

Content management systems have become

indispensable tools for businesses, educational

institutions, and government organizations, as they

simplify the process of creating and maintaining

digital content. They allow users to organize

content in a structured manner, enabling efficient

retrieval and dissemination. With the rapid

evolution of web technologies, it is crucial to utilize

modern frameworks and tools that offer flexibility,

scalability, and ease of development.

The system described in this article leverages

the power of NPM, a popular package manager for

JavaScript, to handle dependencies and streamline

the development process. Vue.js, a progressive

JavaScript framework, provides a solid foundation

for building dynamic user interfaces and interactive

components. Node.js, a server-side runtime

environment, facilitates the backend operations and

enables seamless communication between the

frontend and the database.

To ensure robust data storage and retrieval,

Postgresql, a powerful and reliable open-source

database management system, is employed. Its

versatility and scalability make it an ideal choice

for handling diverse content-related data.

Additionally, Strapi, a flexible headless CMS built

with Node.js, is utilized to accelerate the

development process by offering pre-built features

and a user-friendly admin panel.

By combining these technologies, the resulting

content management system aims to provide a

comprehensive solution for managing requests,

administrative tasks, reporting, and master data.

The system's features include a dynamic dashboard

displaying ongoing requests and assessments,

request creation for various categories such as

courier, meeting room booking, stationeries, tools,

and transportation, admin controls for request

approval or rejection, report generation for stock

flow, courier activities, and driver assessment, as

well as comprehensive master data management.

This article draws upon a variety of reliable

sources, including technical documentation, online

Liaison Journal Of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 2

tutorials, and best practices in content management

system development. The information presented

here is compiled based on the knowledge and

expertise gained from working with NPM, Vue.js,

Node.js, Postgresql, and Strapi, as well as the

practical implementation of a content management

system using these technologies.

2. LITERATURE REVIEW

2.1 NPM

NPM (Node Package Manager) is a widely

used package manager for JavaScript that simplifies the

process of managing dependencies in web development

projects. It allows developers to install, update, and

manage third-party libraries and tools effortlessly. NPM

provides a vast ecosystem of packages, enabling

developers to leverage existing solutions and accelerate

their development process. The documentation provided

by NPM offers comprehensive guidance on package

installation, configuration, and usage, making it a

valuable resource for developers.

2.2 Vue.js

Vue.js is a progressive JavaScript framework that

focuses on building user interfaces. It offers a simple and

intuitive syntax, allowing developers to create

interactive and dynamic web applications efficiently.

Vue.js follows a component-based architecture, making

it highly modular and reusable. The framework's

extensive documentation provides detailed explanations

of its core concepts, including data binding, directives,

and computed properties. This documentation serves as

a valuable resource for developers to learn Vue.js and

implement its features effectively.

2.3 Node.js

Node.js is a server-side JavaScript runtime

environment that enables developers to build scalable

and high-performance web applications. It utilizes an

event-driven, non-blocking I/O model, making it well-

suited for handling concurrent requests. Node.js has a

vast ecosystem of modules available through NPM,

allowing developers to extend its functionality. The

official Node.js documentation covers various aspects of

Node.js, including its APIs, modules, and best practices.

This documentation serves as a comprehensive reference

for developers working with Node.js.

2.4 Postgresql

 Postgresql is a powerful open-source relational

database management system (RDBMS) known for its

reliability, scalability, and rich feature set. It supports

advanced data types, indexing mechanisms, and

transactional integrity, making it a popular choice for

data-intensive applications. The Postgresql

documentation provides detailed information on

installation, configuration, SQL syntax, and advanced

database features. It serves as a comprehensive resource

for developers and database administrators seeking to

leverage Postgresql's capabilities.

2.5 Strapi

Strapi is a flexible headless content management

system (CMS) built with Node.js. It enables developers

to quickly create APIs and build customizable content

management solutions. Strapi's features include an

admin panel, content types, authentication, and role-

based access control. Its documentation covers various

aspects of building applications with Strapi, including

installation, configuration, and customization. The

documentation serves as a valuable resource for

developers looking to leverage Strapi to build robust and

scalable content management systems.

2.6 Content Management System (CMS)

A content management system (CMS) is a software

application that enables users to create, manage, and

publish digital content on the web. CMSs provide a user-

friendly interface for content creation, editing, and

organization, allowing individuals and organizations to

efficiently manage their online presence. The literature

surrounding CMSs covers various aspects, including

architectural models, usability, security, scalability, and

customization. Research has focused on evaluating

different CMS platforms, comparing their features and
performance, and identifying best practices for content

management and delivery.

2.7 CRUD Operations

CRUD (Create, Read, Update, Delete) operations

refer to the fundamental actions performed on data in a

database or information system. These operations are the

building blocks of data management, allowing users to

interact with data by creating new records, retrieving

existing data, updating records, and deleting records.

Literature related to CRUD operations explores database

design, data modeling, query optimization, transaction

management, and data integrity. Researchers have

examined various techniques, frameworks, and

technologies to improve the efficiency and reliability of

CRUD operations, ensuring data consistency and

integrity.

3. METHODOLOGY
The methodology employed in the development of

the content management system (CMS) application. It

describes the tools, technologies, and steps involved in

creating the application, including the architectural

design, implementation process, and testing strategies.

The methodology follows an iterative and incremental

approach, ensuring the application meets the desired

requirements and quality standards. The development

process consists of several key stages, including

requirement gathering, system design, implementation,

and testing.

3.1 Requirement Gathering

Liaison Journal Of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 3

The first phase of the methodology involves

gathering and analyzing the requirements for the CMS

application. This process includes conducting interviews

with stakeholders, identifying user needs, and defining

the scope and objectives of the system. The gathered

requirements serve as the foundation for the subsequent

stages of the development process.

3.2 System Design

Based on the gathered requirements, the system

design phase focuses on designing the architecture and

components of the CMS application. This includes

creating wireframes, defining data models, and

designing the user interface. The selected technologies,

including NPM, Vue.js, Node.js, Postgresql, and Strapi,

are incorporated into the design to ensure compatibility

and meet the desired functionality.

3.3 Implementation

The implementation phase involves translating the

system design into actual code. The selected

technologies are utilized to develop the frontend,

backend, and database components of the CMS

application. NPM is used for package management,

Vue.js for building the frontend user interface, Node.js
for developing the backend server logic, and Postgresql

for storing and retrieving data. Strapi is leveraged for

rapid development of the CMS functionalities.

3.4 Testing

Throughout the development process, rigorous

testing is performed to ensure the quality and reliability

of the CMS application. Different testing techniques,

such as unit testing, integration testing, and user

acceptance testing, are employed to identify and rectify

any bugs or issues. Test cases are designed to cover

various functionalities, including CRUD operations,

request management, administrative controls, and report

generation.

3.5 Deployment

Once the application development and testing phases

are complete, the CMS application is deployed to a

suitable hosting environment. This ensures that the

application is accessible to users and operates reliably in

a production environment. The deployment process

involves configuring the necessary infrastructure,

setting up the database, and ensuring the application is

secure and scalable.

The methodology chapter provides a comprehensive

overview of the approach used to develop the CMS

application. It highlights the steps followed,

technologies utilized, and the importance of testing and

deployment. The information for this chapter is sourced

from a combination of established software

development methodologies, industry best practices, and

practical experiences in building content management

systems.

4. RESULT

The developed content management system

(CMS) application demonstrates a user-friendly

and intuitive user interface (UI) that facilitates

seamless navigation and efficient interaction with

various functionalities. The UI design ensures a

smooth user experience and enables users to

perform the desired actions with ease. The results

are described based on the different paths and

functionalities available in the CMS application.

4.1 Home Dashboard

Figure 1. Home Dashboard

The Home Navbar presents a dashboard that

provides an overview of ongoing requests and

assessments, courier requests, meeting room

bookings, stationeries, tools requests, and

transportation requests. The UI showcases these

categories in a clear and organized manner,

allowing users to quickly access relevant

information and take appropriate actions.

4.2 Request

Figure 2. Request List

Figure 3. Request Courier

Liaison Journal Of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 4

The Request section allows users to create

requests for various categories, including courier,

meeting room, stationeries, tools, and

transportation. The UI presents a user-friendly

form or interface for users to input the necessary

details and submit their requests. The form includes

relevant fields and validations to ensure accurate

and complete request submissions.

4.3 Admin

Figure 4. Admin Action List

Figure 5. Admin Courier Request List

The Admin section offers administrative

functionalities to approve or reject requests from

requestors for courier, meeting room, stationeries,

tools, and transportation. The UI provides an

interface specifically designed for administrators to

review and process these requests. The UI presents

a list of pending requests, allowing administrators

to review the details and make informed decisions.

Action buttons for approval or rejection are

available for each request, facilitating quick and

efficient processing.

4.4 Report

Figure 6. Report List

Figure 7. Stock Flow Report Download

The Report section enables users to

download documents related to stock flow, courier

activities, and driver assessment. The UI provides

a straightforward interface where users can select

the desired report type and specify any relevant
parameters. Upon selection, the system generates

the report and offers a download option, allowing

users to obtain the requested documents

conveniently.

4.5 Master Data

Figure 8. Master Data

Figure 9. Master Data List

Liaison Journal Of Engineering ISSN: 2809-5243

Vol. 3, No. 1, June, 2023 5

Figure 10. Master Data CRUD

The Master Data section allows users to

view, search, and perform CRUD (Create, Read,

Update, Delete) operations. The UI displays the

master data in a structured and easily searchable

format, enabling users to locate specific records

efficiently. Users can perform CRUD operations on

the master data, such as creating new entries,

updating existing records, reading detailed

information, and deleting unwanted entries. The UI

presents intuitive controls and forms for these

actions, ensuring a seamless user experience.

The results showcase a visually appealing

and functional UI for each of the mentioned paths

in the CMS application. The UI design focuses on

providing an intuitive and efficient user experience,

enabling users to navigate through different

functionalities and perform their desired actions

with ease.

Please note that the specific visual

representations and layout of the UI may vary

based on the implementation and design choices

made during the development of the CMS

application.

5. CONCLUSION

In conclusion, the development of the

content management system (CMS) application

utilizing NPM, Vue.js, Node.js, Postgresql, and

Strapi has resulted in a robust and user-friendly

solution for efficient content management and data

manipulation. The application's UI provides a

seamless experience, enabling users to navigate

through various paths, create requests, perform

administrative tasks, generate reports, and manage

master data effectively. The successful

implementation of the CMS application highlights

the importance of utilizing appropriate

technologies and following a systematic

development methodology.

5.1 Recommendations

Recommendations for future readers and

developers include exploring further customization

options to tailor the CMS application to specific

organizational needs, implementing additional

security measures to protect sensitive data, and

enhancing the reporting functionalities to provide
more comprehensive insights. Additionally,

considering the evolving nature of technology, it is

advisable to stay updated with the latest versions of

the utilized technologies and frameworks, as they

may offer new features and improvements.

Furthermore, conducting user feedback sessions

and usability testing can provide valuable insights

for future iterations and enhancements of the CMS

application, ensuring continuous improvement and

user satisfaction.

References

[1.] NPM Documentation:

https://docs.npmjs.com/

[2.] Vue.js Documentation:

https://v3.vuejs.org/guide/introduction.html

[3.] Node.js Documentation:

https://nodejs.org/en/docs/

[4.] Postgresql Documentation:

https://www.postgresql.org/docs/

[5.] Strapi Documentation:

https://strapi.io/documentation/

[6.] Sommerville, I. (2016). Software

Engineering. Pearson Education.

[7.] Pressman, R. S. (2014). Software

Engineering: A Practitioner's Approach.

McGraw-Hill Education.

[8.] Agile Alliance. (n.d.). Agile Manifesto.

Retrieved from https://agilemanifesto.org/

[9.] W3Schools. (n.d.). Vue.js Tutorial.

Retrieved from

https://www.w3schools.com/vue/

	Abstract. This article presents a content management system built using NPM v6.14.17, Vue.js v3.x, Node.js v14.20.1, Postgresql v13.2.1, and Strapi v3.6.6. The system provides various functionalities such as an Ongoing request and assessment dashboard...
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. METHODOLOGY
	4. RESULT
	5. CONCLUSION
	References

