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Abstract. The inverse kinematics (IK) problem in area of robotics, game and computer 

graphics is one of the most essential problems. To find the solution, set of joint positions 

of the articulated model must be calculated so that a specific point of the system can 

achieve a desired target. Thus, in this paper, the quadratic Bezier curve based iterative 

algorithm is proposed for IK  problem of articulated manipulator. This algorithm 

doesn’t require rotation of angle or matrix computation, has low computational cost 

and results in position of joints efficiently with high accuracy, smooth and realistic 

pose. In this paper, the proposed algorithm is tested over a 6 joints articulated planar 

system. Due to the nature of Bezier curve, this algorithm has a directional obstacle 

avoidance ability. For 100 tests, the average convergence time for the tested 

configurations is about (0.0019 s) and the position error between end-effector and 

target was around (5.0180e-04 mm). 
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I. INTRODUCTION

The solution of kinematics is an initial step to

carry out a desired task, to generate path and

control motion. Forward kinematics

calculates the rotation and the displacement of

joint angles and the subsequent of the end-

effector position can be determined, this can

be analyzed using Denavit-Hartenberg

parameter. With inverse kinematics, joint

parameters are to be determined in order to

move the end-effector as smooth and as close

as possible to the target and satisfying the

constraints of the system. Despite the

extensive researches in many areas such as

robotics, game, animation and ergonomics, it

remains a challenging problem until now. The

analytical solution is not always promising as

it is confronted with singularity problems,

abnormal discontinuities, not unique solutions

and high computational cost. Manipulator 

with high degree of freedom is even more 

difficult to solve analytically. Thus, the aim of 

this paper is to propose an iterative algorithm 

to approximate a good solution which has low 

computational cost and produces realistic 

poses. Bezier curve based iterative algorithm 

creates at first a smooth curve connecting the 

base and the target. The curve will be 

discretized and an initial adjusting of the links 

between the base and the target to the 

discretized curve can take place. 

Decrementing the y axis coordinate of the 

middle control point and repeating the links 

adjusting will result in the updated joint 

positions between base and target which solve 

the IK problem with smooth and realistic 

pose. Incorporating binary search in 

decrementing and adjusting ensures that this 
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algorithm has fast convergence rate and low 

computational cost. 

II. LITERATURE REVIEW

There are various techniques for solving IK

problems such as analytical approach,

numerical approach, heuristic approach and

geometric approach and artificial-intelligence

approach. Complete overview can be found in

[2, 3, 4], In this paper, the literature overview

will be narrowed down to analytical and

numerical techniques.

A. ANALYTICAL SOLUTION

Analytical solution incorporates function of

the length of the system, initial position and

rotation constraints, the solution is typically

not unique, thus, some assuptions are usually

made to ensure a unique solution [2]. Korein

et al. [1] reviewed early techniques of

analytical solutions. Early analytical solution

of 6R manipulator has been proposed by [5,

6]. IK tool to solve IK equation has been

developed by Diankov [7] for motion

planning for robotics in real-world

applications. An analytical  IK method to

achieve anthropomorphic arm posture for a

given end-effector position and orientation

Was proposed by Zhao et al. [8]. Tong et al.

[9] proposed a semi-analytical approach for

solving redundant sliding manipulators.

Nevertheless, non-linear behaviour of

kinematics systems of higher degree causes

analytical solution not suitable for e.g. 7-DoF

redundant systems.

B. NUMERICAL SOLUTION

Numerical solution uses iterative method to

minimize a cost function. Typical numerical

solutions are based on Jacobian, Newton and

heuristic methods. Jacobian based method is a

linearization of nonlinear functions and uses

Jacobian matrix to change the set of joint

positions of kinematic chain, so that the end-

effector reaches the target gradually. Gier [10]

presented how Jacobian pseudoinverse 

method applied to 6-DoF for 3D printing 

Numerous Jacobian based methods using 

pseudoinverse was presented by Buss [11]. 

Duleba et al. [12] compared various Jacobian 

based methods i.e. Jacobian pseudoinverse 

and transpose method, Damped least square 

and Modified Damped least square method. 

Newton method  is a solution minimization 

problem of the target configuration. Thus, the 

result is a smooth motion without abnormal 

discontinuities [13]. However, the drawback 

is that Newton method suffers from high 

computational complexity. The most popular 

ones are the Broyden method, the Powell 

method and the Broyden, Fletcher, Goldfarb, 

and Shanno method [14]. Duleba and Karcz-

Duleba [15] proposed acceleration Newton 

method of IK problem for robot manipulators. 

For solving IK problem with prismatic, 

revolute and spherical joints, a numerical 

approach for calculating the exact Hessian 

was presented by Erleben and Andrews [16]. 

Heuristic methods have been gaining more 

attention, being simple yet easy to implement, 

efficient, has fast convergence rate and high 

accuracy.   Typical for heuristic IK solver is 

CCD [17, 18, 19, 20 ], Triangulation [21, 22] 

and FABRIK [13, 23, 24] . CCD is an iterative 

heuristic IK solver which is computationally 

fast and can run at interactive frame rates. 

However, CCD tends to overemphasize the 

movement of joints closer to the end-effector 

of the kinematic chain. Triangulation is a non-

iterative approach that uses the cosinus law to 

determine each joint angle from the base to the 

end-effector. It has a lower computational cost 

than CCD, since it needs only 1 iteration to 

reach the target, however, the pose is often 

unrealistic. Instead of using rotational angles 

or matrices, FABRIK calculates each joint 

position via locating a point in a line. 

Songqiao Tao et al. [23] extended FABRIK 

algorithm with obstacle avoidance. 
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III. METHODOLOGY

Bezier curve is a parametric curve and widely

used in computer graphics, game and related

fields, it is used to create a smooth curve and

path, it can move in all direction and perform

loops, it’s properties like the normals and

tangents are convenient to orient object and

can be used to create coordinate space around

each points which can be used to generate

procedural geometry. A Bezier curve  is

defined by a set of control points from P0  to

Pn  where n denotes the order (n =1 for linear,

n= 2 for quadratic, n= 3 for cubic, etc. (see

figure 1)). Bezier curve of order n+1 is

represented by

𝐶(𝑡) = ∑ 𝒑𝒊𝐵𝑖,𝑛(𝑡)
𝑛

𝑖=0
,   0 ≤ t ≤ 1

(1) 

Where 𝒑𝒊 are the control points and 𝐵𝑖,𝑛  the

basis functions, they together determine the 

shape of the curve. 

A. LINEAR INTERPOLATION

Given two points P0  and P1  and a line segment

connecting those two points. A point P

between P0 and P1 (figure 2) can be described

by a linear interpolation

𝑝(𝑡) = (1 − 𝑡)𝑃0 + 𝑡𝑃1,  0 ≤ t ≤ 1

(2) 

t-value defines the position of P, t-value of

zero moves the point  to P0  and t-value of one

moves the point to P1, and any value in

between is a blend between those two.

(a) 

(b) 

Figure 1: Example of Bezier curve. a) Quadratic Bezier 

curve with three control points. b) Cubic Bezier curve with 

four control points.

Figure 2: Linear interpolation between points P0 and P1. 

B. QUADRATIC BEZIER CURVE

A Quadratic Bezier curve can be interpreted

as a linear interpolant between a point on a

linear interpolation from P0 and P1 and from

P1 and P2 described by
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𝑝(𝑡) = (1 − 𝑡)((1 − 𝑡)𝑃0 + 𝑡𝑃1) +

 𝑡 ((1 − 𝑡)𝑃1 + 𝑡𝑃2),  0 ≤ t ≤ 1   

(3) 

And can be rearranged to 

𝑝(𝑡) = (1 − 𝑡)2𝑃0 + (1 − 𝑡)2𝑡𝑃1 +

𝑡2𝑃2 ,    0 ≤ t ≤ 1                

(4) 

With three control points P0, P1 and P2 , 

equation (1) can be simplified to 

𝐶(𝑡) = ∑ 𝒑𝒊𝐵𝑖,2(𝑡)
2

𝑖=0
,  0 ≤ t ≤ 1 

(5) 

With      

𝐵0,2(𝑡) = (1 − 𝑡)2

(6) 

𝐵1,2(𝑡) = 2𝑡(1 − 𝑡)

(7)

𝐵2,2(𝑡) = (𝑡)2                     

(8)        

generating the terms of series results in 

𝐶(𝑡) = 𝑷𝟎(1 − 𝑡)2 + 𝑷𝟏2𝑡(1 − 𝑡) + 𝑷𝟐(𝑡)2

(9) 

Let 𝑷𝟎 = ( x0 , y0 ), 𝑷𝟏 = ( x1 , y1 ), 𝑷𝟐=( x1 ,y1 ),  

then two separate functions  for coordinates x 

and y can be written 

𝑥(𝑡) = 𝒙𝟎(1 − 𝑡)2 + 𝒙𝟏2𝑡(1 − 𝑡) + 𝒙𝟐(𝑡)2  (10)

𝑦(𝑡) = 𝒚𝟎(1 − 𝑡)2 + 𝒚𝟏2𝑡(1 − 𝑡) + 𝒚𝟐(𝑡)2

(11) 

C. ARTICULATED OBJECT

The configuration tested for this paper is a

system composed of five serial rigid links

connected by revolute joints in a two

dimensional plane. The joints consist of base

joint, which has no parent joint and has one

child joint, interconnected joints, each has one

parent joint and one child joint, and an end-

effector. The end-effector has no child joint. 

The rotational axis is the normal axis to the 

plane, that is, either joints rotation about x-

axis, y-axis or z-axis. Figure 3 represents the 

configuration set up in this paper, which the 

inverse kinematics solver should be applied to, 

li, 1 ≤ i ≤ 5 are the links, l1 ist the link 

connecting base joint and it’s child joint, l5 is 

the link connecting end-effector and the 

parent joint before it. ji, 1 ≤ i ≤ 6 are the joints 

connecting the links, j1 ist the base joint, j6 is 

the joint of end-effector. Given a target, the 

end-effector should be placed on the target, all 

joints positions except base joint should be 

updated accordingly. 

D. ITERATIVE INVERSE KINEMATICS

SOLVER BASED ON QUADRATIC

BEZIER CURVE

In the following,  figure 4 illustrates how the

algorithm works for a simple system, the

system composed of five links, six joints and

one target.  Three control points (base joint,

end-effector joint and target), which construct

quadratic bezier curve, form a control polygon

P0P1P2 (figure 4a). In the first step, from the

initial control polygon, the curve will be

partitioned with n equidistant points, where

the curve points are defined by 𝐶𝑖  ϵ 𝐶(𝑡), i ϵ

[1, 𝑛]  , where 𝐶1 = 𝑗1  and 𝐶𝑛 = 𝑇  (with 𝑇  is

target), then
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Figure 3: Rotating joints of articulated object about z 

axis, x axis and y axis

define curve points 𝐶𝑗 , i < j ≤ n, and define 𝑑𝑖, 

where 𝑑𝑖  represents the length of the link 

between joint i and joint i+1. In the second 

step, the curve length will be estimated by 

𝑙𝑒𝑛𝑔𝑡ℎ (𝐶(𝑡)) = ∑ |𝐶𝑖+1 −  𝐶𝑖|𝑛
𝑖=1  and calculate 

𝑑 =  ∑ 𝑑𝑖
𝑚−1
𝑖=1 , where 𝑑𝑚−1 is the length of link 

connecting end-effector joint and the parent 

joint before it. After moving last joint to the 

target 𝑗𝑚 = 𝑇  , then If 𝑑 <  𝑙𝑒𝑛𝑔𝑡ℎ (𝐶(𝑡)) the 

iteration starts from 𝐶𝑖 , find 𝐶𝑗  such that

|𝐶𝑗 − 𝐶𝑖| = 𝑑𝑖 and move 𝑗𝑖+1 to the position of 

𝐶𝑗  and set 𝐶𝑖+1 = 𝐶𝑗 , the new position of joint 

𝑗𝑖+1  is denoted by 𝑗′𝑖+1 ,. The next iteration 

starts at 𝐶𝑖+1 and a full iteration ends if 𝑗𝑚−1 is 

moved to the curve. This is based on the linear 

search, however, binary search can be 

implemented for much faster convergence 

time and reduction of number of iterations 

(see the pseudo-code section).  Repeating 

above iteration until the last joint will result in 

updated joints position (figure 4b). After one 

complete procedure, the joints are all moved 

to the curve with the correct length between 

the joints, except for the link between end-

effector joint and the target, which seems 

longer than it should be |𝑇 − 𝑗𝑚−1| ≠ 𝑑𝑚−1 . 

Thus, In the third step, the main task is finding 

the appropriate position of the middle control 

point P1, which is crucial for determining the 

satisfactory control polygon and, the related 

Bezier curve and the joint positions. To get a 

sequence of control polygons and curves, the 

y coordinate of middle control point, P1, will 

be shifted downwards iteratively (figure 4c). 

In each iteration of new position of P1,i , i ϵ 

[1, 𝑘]  (k is the number of equdistant points 

between y coordinate of base joint and last 

joint), the first and second steps above will be 

repeated until the condition |𝑇 − 𝑗𝑚−1| =

𝑑𝑚−1 is satisfied and the final position of 

P1,final  found. The result is the final pose of 

joint positions. However, shifting or 

reflecting the control point P1 in x axis 

direction can be considered : 

1) To smoothen the final pose.

2) If 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶(𝑡)) ≈ 𝑑 , that is, if the

initial curve length produced by the

initial control polygon is still greater

than the sum of length of the

articulated manipulator links, yet too

close.

3) To avoid an obstacle.

Figure 5 represents how the final pose can be 

smoothened. After P1,final calculated 

iteratively from P1,1 (figure 5a), the pose can 

be improved by shifting the position of P1,1  in 

positive x axis direction to 𝑷𝟏,𝟏
𝒔𝒉𝒊𝒇𝒕𝒆𝒅

, thus, after 

finding resulting 𝑷𝟏,𝒇𝒊𝒏𝒂𝒍
𝒔𝒉𝒊𝒇𝒕𝒆𝒅

 , resulting in a new 

control polygon and the updated improved 

pose (figure 5b).  Point 2) and 3) will be 

discussed in the next sections. 
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E. CRITICAL ZONE

If the length of the links of the articulated

manipulator is close to the curve length,

𝑙𝑒𝑛𝑔𝑡ℎ (𝐶(𝑡)) ≈ 𝑑, the adjusment of the links

to the curve will become less precise. A

workaround for this problem is shifting the

control point P1,1. Exemplifying of this

situation will be presented in chapter III

(experimental results).

F. SAFE ZONE

If the distance between base joint and target is

too close, the length of the links of the

articulated manipulator becomes less than the

curve, 𝑙𝑒𝑛𝑔𝑡ℎ (𝐶(𝑡)) < 𝑑 , the adjusment of

the links to the curve is not possible anymore.

To prevent this, the user might adjust the

length of the links or reduce the number of

joints or links before performing the IK test.

G. OBSTACLE AVOIDANCE ABILITY

In many situations, articulated manipulators

work incomplex environments where

interferences with surrounding can occur. In

this section, additional strategy will be added

to the algorithm and presented to resolve such

problem.  As mentioned previously, one of the 

advantages of Bezier curve is that it allows for 

obstacle avoidance ability. This scenario can 

be seen in picture , the manipulator with the 

initial control polygon and control point P1,1, 

confronted with an obstacle. To avoid this, the 

position of P1,1  will be shifted iteratively in 

negative x axis direction to 𝑷𝟏,𝟏
𝒔𝒉𝒊𝒇𝒕𝒆𝒅

 and a new 

control polygon will be produced, 𝑷𝟏,𝒇𝒊𝒏𝒂𝒍
𝒔𝒉𝒊𝒇𝒕𝒆𝒅

 can 

then iteratively calculated, resulting in a final 

control polygon and the updated final pose of 

manipulator with no interference. If shifting 

the position of P1,1 repeatedly doesn’t succeed 

(e.g. due to several obstacles blocking the 

path), reflecting the control point P1,1 can be 

considered. Figure 7a) illustrates that the point

P1,1 can be reflected to x axis and afterwards 

shifted, assumed that there is no constrain 

underneath the base joint limiting  the path of 

the manipulator.  If several attempts to reach 

the target by shifting the control point P1,1

fails, reflecting it and shifting it to  

𝑷𝟏,𝟏
,𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒆𝒅 𝒔𝒉𝒊𝒇𝒕𝒆𝒅

 can be Performed. After the 

point 𝑷𝟏,𝒇𝒊𝒏𝒂𝒍
,𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒆𝒅 𝒔𝒉𝒊𝒇𝒕𝒆𝒅

 and the corresponding 

a) 
b) 

 

c) 

Figure 4: Iterative procedure. a) Construct an initial control polygon and the Bezier curve. b) Adjust the links and joints iteratively to the curve. 

c) Find the new position P1,i iteratively until the final position  P1,final  found and the target is reached.
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control polygon found, the final attempt to 

reach target is accomplished (figure 7b).  

Pseudo Code of the Inverse Kinematics 

routine 

 Input: Joint positions 𝑗𝑖 , target position T 

and distance between each joint 𝑑𝑖 =

|𝑗𝑖+1 − 𝑗𝑖| for i = 1,...,m-1. 

First control point P0, second control 

point P1, third control point P2 

 Output: new joint positions 𝑗′𝑖+1 ,..., 

𝑗′𝑚−1 

1 

 

2 

% Calculate distance between base and 

target 

dist = |𝑇 − 𝑗1| 

3 

4 

% If the target is reachable 

If dist < 𝑑 =  ∑ 𝑑𝑖
𝑚
𝑖=1  

5 

 

% Create n equdistant points on the curve 

t = linearspace(0, 1, n); 

6 

 

 

% Create a discretized Bezier curve  

𝐶(𝑡) ≈ 𝐶𝑗 

𝐶𝑗 = 𝑷𝟎(1 − 𝑡)2
 +𝑷𝟏 2𝑡(1 −

𝑡) + 𝑷𝟐(𝑡)2 

7 % Move last joint to the target 𝑗𝑚 = 𝑇 

8 % Initial adjusting of the links between 𝑗𝑖  

and 𝑗𝑖+1  to the curve either with linear 

search or binary search 

8a % Linear search 

% All joints except base and end-effector 

the iteration will be conducted for all (m-

2)-joints (m = number of joints)  

for i = 1 : length(t) , i < j ≤ n 

     if (|𝐶𝑗 − 𝐶𝑖| = 𝑑𝑖) ,  

       𝐶𝑖+1 = 𝐶𝑗 ; 

     End 

   End 

8b 

 

% Binary search : starting in the middle 

of interval [0 n], the iteration will be 

conducted for all (m-2)-joints (m = 

number of joints)  

up = n; low = 1; mid  = floor(
low+up

2
); 

While |𝐶𝑚𝑖𝑑 − 𝑗𝑖| ≠ 𝑑𝑖 do 

   If (|𝐶𝑚𝑖𝑑 − 𝑗𝑖| > 𝑑𝑖)  

       up = mid; mid  = floor(
low+up−1

2
); 

   Else if (|𝐶𝑚𝑖𝑑 − 𝑗𝑖| < 𝑑𝑖) 

       low = mid; mid  = floor(
low+1+up

2
); 

    End 

  End 

      𝑗𝑖+1 = 𝐶𝑚𝑖𝑑 

9 

 

 

% Create k equdistant points from y 

coordinate of P0  to y coordinate of P1   

𝑦𝑃 = linearspace(𝑦𝑃0, 𝑦𝑃1, k); 

10 % Finding the position of P1,final  

iteratively either with linear search or 

binary search, and repeat step 6 and 8. 

10a % Linear search:  

for i = 1 : length(𝑦𝑃) 

𝑦𝑃1 = 𝑦𝑃1,𝑖;  repeat step 6 and 8a; 

If |𝑇 − 𝑗𝑚−1| = 𝑑𝑚−1  

Break; 

End 

End 

10b 

 

 

% Binary search: starting in the middle 

of interval [𝑦𝑚𝑖𝑑𝑃0𝑃1 , 𝑦𝑃1] with 

𝑦𝑚𝑖𝑑𝑃0𝑃1 = floor (
𝑦𝑃0+ 𝑦𝑃1

2
)  

low = 𝑦𝑚𝑖𝑑𝑃0𝑃1  ;  up = 𝑦𝑃1 ; mid= 𝑦𝑃1; 

  While |𝑇 − 𝑗𝑚−1| ≠ 𝑑𝑚−1 do 

      If (|𝑇 − 𝑗𝑚−1| > 𝑑𝑚−1 ) % This is 

always the case in the 1st iteration 

       up = mid; mid  = floor(
low+up−1

2
) 

      Else if (|𝑇 − 𝑗𝑚−1| < 𝑑𝑚−1) 

       low = mid; mid  = floor(
low+1+up

2
) 

       repeat step 6 and 8b; 

       End 

% if convergence requires that P1 to be 

smaller than 𝑦𝑚𝑖𝑑𝑃0𝑃1 , then  extend the 

lower bound to 𝑦𝑃0 

  if (mid==1) 

     𝑦𝑃 = linspace(𝑦𝑃0, y_p(mid), k); 

        up = length(𝑦𝑃); 

        low = 𝑦𝑃0; 

      End 

𝑦𝑃1 = mid; 

  End 

End 

 𝐶𝑖 = [𝐵𝑎𝑠𝑒, 𝑗𝑖+1, … , 𝑗𝑚−1, 𝑇𝑎𝑟𝑔𝑒𝑡 ]; 
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a) 

 

 

b) 

Figure 5: smoothening the curve. a) Final pose without 

shifting the point P1,1. b) Final pose with the point P1,1 

shifted. 

 

 

a) 

 

b) 

Figure 6: Obstacle avoidance. a) Final pose with an 

interference. b) Final pose without interference by shifting 

the control point P1,1. 
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a) 

 

b) 

IV. RESULTS

To verify the presented algorithm, Matlab was

used to test whether the end-effector of the

articulated manipulator can reach a set of

target positions and to test whether directional

obstacles can be avoided. The 2D model is a

six-joint manipulator with the joint

coordinates (0, 0), (0, 1), (0, 2), (0, 3), (0, 4),

(0, 5), the base of the manipulator is fixed to

the ground, the end-effector can be positioned 

within the safe zone and critical zone (with 

shifting of control point P1). Represented in 

figure 8 are the coordinates of the target 

positions set at (4, 0), (4, 1.5), (4, 3), (3, 0), (3, 

2), (3, 4), (2, 0), (2, 2) and (2, 4) which are 

labeled as orange circles, the initial state of the 

manipulator (vertical and labeled as black) 

and the final postures (labeled as black). The 

coordinates of the target positions are within 

the safe zone except (2, 2).  Figure 9 

represents how directional obstacles can be 

avoided by shifting the control point P1. The 

initial state of the manipulator is labeled as 

black, the first, second and third attempt to the 

target are respectively labeled as purple, blue 

and black, the target coordinate used for the 

obstacle avoidance test is (2, 4) and labeled as 

orangle circle, the red round objects are 

representing the obstacles and positioned at 

(1.5, 3.9) (figure 9a) and at (1.5, 3.9) and (1.7, 

3.5) (figure 9b). In the experimental results, 

adjusting the links to the curve and 

decrementing the position of  𝑃1,𝑖  by linear

search (target position (4, 0) and (4, 2)) and by 

binary search (target position (4, 0), (4, 1.5), 

(4, 3), (3, 0), (3, 2), (3, 4), (2, 0), (2, 2), (2, 4)) 

are presented. For linear search and binary 

search, the number of discrete points n on 

curve and the number of discrete points k 

between P0 and P1, are respectively 4101 and 

800, and 5001 and 900. For obstacle 

avoidance test, the algorithm used linear 

search with n and k respectively 4101 and 800. 

The statistical results of results in figure 8 are 

respectively shown in table 1. Table 1 presents 

the number of iterations needed, the lowest 

distance that can be achieved between end-

effector and target positions, run time and 

both searching methods for links adjusting to 

the curve as well as for finding P1,final. It is 

shown that finding P1,final by binary search is 

better than linear search since the requiered 

number of iterations and the run time of are 

drastically reduced, though the run time at 
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a) b) c) 

d) e) f) 

g) h) i) 

 Figure 8: Visualization of experimental results of Bezier curve based iterative solver tested 

      over a kinematic chain with 6 joints 
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Table 1: Average results (over 10 runs) for the kinematic chain with 6 joints 

a) b) 

 Figure 10: Directional obstacle avoidance. a) first attempt failed due to interference with one 

obstacle, second attempt succeeded. b)  first and second attempt failed due to two obstacles, third 

attempt succeeded. 

Number 

of 

iterations 

Distance 

between end-

effector and 

target (mm) 

Matlab run 

time 

(s) 

Method of 

adjusting 

links to the 

discretized 

curve 

Method of 

searching for 

P1,final 

Whether  P1,1  

shifted ? 

Result 

1 504 6.7196e-04 0.0012 Binary search Binary search No Figure 8a 

2 544 8.5708e-04 0.0026 Binary search Binary search No Figure 8b 

3 615 2.4320e-04 0.0025 Binary search Binary search No Figure 8c 

4 351 3.3380e-04 0.0028 Binary search Binary search No Figure 8d 

5 288 3.6458e-04 0.0018 Binary search Binary search No Figure 8e 

6 546 7.3012e-04 0.0019 Binary search Binary search No Figure 8f 

7 418 9.0282e-04 0.0018 Binary search Binary search No Figure 8g 

8 1 0.0655 3.78e-04 Binary search Binary search No Figure 8h 

9 280 3.9340e-05 0.0012 Binary search Binary search No Figure 8i 

10 616032 6.7196e-04 0.1752 Linear search Linear search No Figure 8a 

11 591150 8.5708e-04 0.1596 Linear search Linear search No Figure 8b 

12 272 3.7331e-04 0.0010 Binary search Binary search Yes (0.2 to the 

left ) 

Figure 8h 
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linear search is fairly low. Figure 8h 

represents an initial state of the manipulator 

and a target position in a critical zone (2, 2), 

its lowest distance between end-effector and 

the target, which can be achieved with the 

given parameters, is clearly not as 

satisfactory as the other results. By shifting 

the point P1 by 0.2 to the left, a much more 

precise distance can be obtained. In figure 9a, 

in order to avoid the obstacle in the first 

attempt, the position of P1 was shifted by 1.3 

to the right and the second attempt 

succeeded. In figure 9b, another obstacle is 

positioned within the path of the second 

posture of the manipulator, thus, the position 

of P1 was shifted subsequently by 0.7 to the 

right and the third attempt prevailed. 

IV. CONCLUSIONS

In the previous sections a new method of

solving IK problem utilizing Bezier curve was

described. The advantage of this method is

there is always a smooth realistic curve

produced from the base joint to the target

where the base joint and the end-effector are

excluded from the calculation and only the

interior joints need to be considered. This

method gains an upper hand compared to

Jacobian numerical approaches in terms of

being able to produce realistic postures

without erratic discontinuities. This IK solver

is computationally efficient, especially if

binary search is utilized, the number of

iterations is equal to log2 𝑘 ⋅ ((m − 2) ⋅

log2𝑛) for binary search and k ⋅ (𝑚 − 2) ⋅ n

for linear search where k is the number of

points between P0 and P1, m the number of

joints and n the number of points on the curve.

Another advantage is also that this method can

avoid directional obstacles by shifting the

point P1 as demonstrated in the previous

sections. The next milestone is to improve the

stability and optimize the test results for the

proposed method.
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