
Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

8

IMPLEMENTATION OF ASYNCHRONOUS PARALLEL
PROCESSING WITH RASPBERRY PI CLUSTER

Pradana Atmadiputra1

Computer Science Engineering, International University Liaison Indonesia, BSD, Indonesia

email: 1pradana.atmadipura@iuli.ac.id

Abstract. Modern parallel computing has ever been so chunky and expensive. With
the use of a miniature sized Raspberry Pi and Cluster HAT, it becomes more
affordable and leaves a small physical footprint for easy storage. Parallelism can be
used to spread the workload of computation-intensive applications across the multiple
cores of a Raspberry Pi. It is the principle upon which modern supercomputers are
built. This paper will describe the implementation of asynchronous parallel
processing with Raspberry Pi Cluster. This research involves a Raspberry Pi 3, four
Raspberry Pi Zeroes, and a ClusterHAT to act as the controller of the cluster. The
cluster is then tested against a Python-based module specifically used to exploit
clusters and a ‘nginx’ web server. The experiment proves that clustered Raspberries
perform better than single ones. It also proves that the cluster seamlessly functions
as a single unit regardless of inactive nodes.

Keywords: Parallel Computing, Raspberry Pi, Supercomputers, Cluster

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

8

1. Introduction
Parallel computing and related concepts have
since been used by capital intensive industries
in the late 1960s. With the costs of hardware
dropping overtime and the birth of open-
source applications and operating systems;
enthusiasts, students, young professionals, and
small companies would have the ability to
leverage these technologies for their own.
Traditionally, the term parallel computing was
found within High Performance Computing
(HPC) architectures whereby systems were
categorized by high speed and dense
calculations which is also familiar with super-
computing.

The beginning of supercomputing can be
found in the 1960s with an organization called
Control Data Corporation (CDC). Seymour
Cray was an electrical specialist working for
CDC who got known as the dad of
supercomputing because of his work on the
CDC 6600, generally viewed as the principal of
supercomputers. The CDC 6600 was the
quickest operating PC somewhere in the range
of 1964 and 1969. In 1972 Cray left CDC and
founded his own organization, Cray Research.
In 1975 Cray Research publicly announced the
Cray-1 supercomputer.

The Cray-1 would proceed to be one of the
best supercomputers in history and was still
being used among a few establishments until
the late 1980s. The 1980s likewise observed
various players enter the market including
Intel through the Caltech Concurrent
Computation venture, which contained 64
Intel 8086/8087 CPU's and Thinking Machines
Corporation's CM-1 Connection Machine.
The boom occurred in the 1990s concerning
the number of processors being integrated for
super-computing machines. It was in this
decade that IBM notoriously beat world chess
ace Garry Kasparov with the Deep Blue
supercomputer.

The Deep Blue machine contained around 30
nodes each including IBM RS6000/SP parallel
processors and various "chess chips". By the
2000s the number of processors had bloomed
to many thousands working in parallel. As of
June 2013, the quickest supercomputer title
was held by the Tianhe-2, which contains
3.120.000 cores and is equipped for running at
33,86 petaflops every second (Parallel
Computing Backgrounder, 2021).

Parallel processing isn't simply restricted to the
domain of supercomputing. Today we see these
ideas present in multi-core and multiprocessor
machines. To an extent, single gadgets we
likewise have, frequently containing a single
core, that can be associated to cooperate over a
network.

Constructing a cluster for computing
enthusiasts has often required the purchase of
expensive and massive hardware like a full
desktop PC’s or implementing complex virtual
machine setups. Essentially what a cluster
means is a group of separate devices paralleled
together.

With the low cost and small compact physical
space, the Raspberry Pi allows computing
enthusiasts to further explore parallel
computing and the premise of building a cluster
has become far cheaper and simple to follow
for users at home. It is an excellent method of
teaching both the hardware and software at the
same time. While the Raspberry Pi wouldn’t
be classified as a full-fledged PC, it still
provides a learning kit that professional clusters
were built upon. For example, working with
industry standards along with MPI and
asynchronous parallel processing on clusters.
The Raspberry Pi 3B comes with a built-in
Wi-Fi, which allows other Raspberry Pi’s to
connect on the same wireless network. Unlike

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

9

a PC which may contain more than one CPU,
the Raspberry Pi 3B contains a single ARM
processor operating at 4 cores with an internal
clock of 4x1.200MHz, multiple of Raspberry
Pi’s combined gives more CPU cores to work
with.

2. Review
Previous implementation of Raspberry
clustering uses a Raspberry Pi 3, a
ClusterHAT, and four Pi Zeroes. The
implementation uses HPC Challenge Linpack
for benchmarking on single Pi Zero, four Pi
Zeroes , and single Pi 3. However, the
benchmarking was not done using the cluster
yet (Smith, 2016).

a. Brief Overview of Asynchronous Parallel

Asynchronous parallel generally means
executing multiple tasks at the same time in
parallel. There would be no blocking process,
like waiting to complete, but rather continue
with delivering other tasks. Sometimes many
people find it difficult to articulate the
difference with parallel programming. Simple
processing of independent data is a great
place for asynchronous parallel and provides
a better UX and, most of the time, better
performance for the application
(Stringfellow, 2017). A framework that
allows asynchronous parallelism would be
Message Passing Interface (MPI). It is a
language- independent message-passing
communication method developed in the early
1990s to aid parallel computing application
development. The MPI standard defines a
core set of routines that can be used by a
programmer for distributing their application
and handles passing back the results of the
executed code seamlessly. In MPI’s earlier
days, C and Fortran were the languages
associated with parallel computing; however,
Java and Python among others have also

offered to support MPI. There are several
parallel asynchronous implementations
besides MPI, which are SHMEM and
OpenMP. It is Jacobi’s method for solving
systems of linear equations.

The precise implementation details of
asynchronous algorithms can strongly affect
the resulting performance and convergence
behavior in unexpected ways (Barney, 2021).

b. Raspberry Pi Cluster Design
Cluster computing is a setup where a set of
computers works together as a single system.
Computers—or nodes—within a cluster must
have identical hardware and software
configurations. Resources in a cluster is
managed by centralized r esource manager.
Cluster computing is typically used to host
databases or web applications.

Figure 1 Cluster Connections Diagram

Figure 1 illustrates the connections between
the individual components that make up a
cluster. The implementation focuses on the
connections between these components and
to harness the processors from the slaves to
combine as a cluster.

The Cluster HAT comprises five micro-USB
2.0 hubs: four for the Pi Zero W and one for
the power delivery to the hardware, and
GPIO controlled for each Pi Zero W
including the Alert LED (ClusterCTRL -
Setup Control, 2021). Secure Shell (SSH) is a
necessary for accessing each individual Pi as

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

10

there will be initial setup and program
installations. Also, in the diagram, one SSH
connection has been clearly shown as the
initial connection to the master node and from
there SSH can be widely used to connect to
other Pi Zero W ports after it has been
configured with its wireless setup.

Another factor to consider is that if one slave
node dies or is inactive due to failure in port
connections or requires backup storage, the
cluster will still work fine as there are no
dependencies between each slave node. It is
treated as an individual node and with this in
mind, users can respectively attach or detach
nodes from clusters. In this cluster, adding
more nodes will have a significant amount of
processing cores and is beneficial for this
research on computing heavy prime numbers
– though the speed in run time execution
differs with a few minor tolerances.

3. Methodology

a. Network Address Translation (NAT)
For the networking of the cluster, it can be
done in different types of system networks
such as Network Address Translation (NAT).
NAT works in a cluster for translation of
public IP addresses to private IP addresses or
vice versa so then every computer on the Local
Area Network (LAN) can easily access the
internet. It is a system that merges more than
one computer to the internet by only using an
IP address. There are various benefits to using
NAT. One of them is to save the legal IP that is
provided by ISP (Internet Service Provider)
(Riyadi, 2019).

The architecture of the network using NAT
can be seen in Figure 2 where each of the
nodes is connected to the controller so public
addresses of 192.168.0.160 are translated to
the private IP address and these addresses can

access the internet as it is connected to the
controller as it has the public address. The
benefit of using NAT itself is creating a subnet
for the nodes to the controller which makes it
more secure, as the nodes can only be visible
to the controller and not the external devices
who want to access it through SSH (L., 2019).

Figure 2 Displaying the network architecture of NAT

(Network Address Translation)

Unlike NAT, bridge networking is another
alternative way of the system network that can
be used to handle the cluster. This bridge
network works to connect each network with
other networks to exchange data packets and
regulate the data circulation. It connects
separate LANs. If the bridge has received a
data packet, it will try to find the destination
and source of the data sent. If the delivery
destination is not recognized, the bridge will
reject it. But if the destination and source are
matched, the data packet will be forwarded to
the destination address (Hidayat, 2019).
CBRIDGE image allows bridging the USB
Gadget Ethernet from the Pi Zeros to eth0 on
the controller which allows them to receive an
IP address from a DHCP (Dynamic Host
Configuration Protocol) server on local
network (ClusterCTRL - Setup Software,
2021).

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

11

Figure 3 NAT (Network Address Translation)

architecture of the cluster

NAT implementation in the cluster can be
done by burning a CNAT image designed for
the NAT implementation to the controller SD
card. After successfully connecting the
cluster to network, each of the node needs to
be configured so they can be accessed
through SSH. By using NAT, each node only
has local address relative to the controller.
Individual node can only be accessed by
accessing the controller first. Figure 3 shows
the host name configuration of each node.

Bridge networking is implemented by
burning the image of CBRIDGE to the
controller SD card. Bridge connection allows
each of the nodes to connect to the Wi-Fi so
then it can be accessed by external devices
without access to the controller first. This is
achieved by assigning public address to each
of the node. Bridge networking will be used
in this implementation.

4. Result

a. Docker distribution implementation on
Raspberry Pi Cluster
One way the cluster can be tested is by using
Docker software, which is an open platform
for developing, shipping, and running
applications (Docker Overview, 2021).
Docker is installed in each of the node, while
Docker swarm is installed in the controller as
the orchestration tool.

The activities of the cluster are controlled by a
swarm manager. Machines that have joined the
cluster will be referred to as nodes. These
nodes can be either swarm manager, worker or
perform both roles, depending on the user’s
need. Swarm managers manage the
membership and delegation while workers
are responsible to run swarm services (What
is a Docker Swarm?, 2021). Figure 4 shows
one node named ‘cnat’ assigned to be
leader/manager.

Figure 4 List of the nodes joined into Docker

In this implementation, a web application
named ‘visualizer-arm’ is used as the tool to
monitor activities in each node. Figure 5
shows the interface of the application. The
figure shows that ‘viz’ (the web application
itself) is running in ‘cnat’ node, which acts as
the manager.

Figure 5 Docker Swarm visualizer

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

12

Figure 6 Adding nginx application running in Docker

Figure 6 shows that the ‘nginx’ web server is
installed and run in the Docker hub. In this
case, the manager node assigned p2 worker
node to run the nginx web server.

Figure 7 Scaling up nginx service

In order to test the task distribution in the
cluster, the ‘nginx’ web server is scaled up to
run six tasks in the Docker Swarm, as shown
in Figure 7.

Figure 8 Task distribution across the cluster nodes

Figure 8 shows the task distribution of the
‘nginx’ task after it’s scaled up. Docker
automatically distributes the tasks across the
cluster nodes (including the managers) as
even as possible, so no single node is
overloaded with numerous tasks.

When nodes were detached from the master
node which is ‘cnat’, the ‘viz’ application
would indicate that some nodes are offline.
Figure 9 shows that nodes p2 and p4 are
inactive.

Figure 9 viz application displays inactive nodes p2 and

p4

Even though two nodes has been deactivated,
the cluster can still distribute the tasks
correctly. Figure 10 shows that the ‘nginx’
web server has been scaled up to run five
tasks, and the tasks can be distributed evenly
across the active nodes and manager, namely
‘cnat’, p1, and p3.

Figure 10 Task distribution across cluster with inactive
nodes

This experiment shows that Docker swarm is
capable to manage to run multiple tasks
across the cluster available nodes.
Regardless of the number of nodes available
in the cluster, the ‘nginx’ web server is still
accessible in the client’s browser, as shown
in Figure 11. In the client’s view, there is no

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

13

indication whether any node is active or not.

Figure 11 Web application sample running on nginx
server, displayed in client's browser

b. Implementation using MPI4PY

Figure 12 Aynchronous parallel process using 3

Raspberries.

Figure 12 illustrates the implementation of
three Raspberry Pi Zeroes running together as
a cluster: two Pi Zeroes, and the master node
Raspberry Pi 3B. In total, the overall core
summed up to six single cores where four
cores came from the Raspberry Pi 3B and the
single cores from the two Pi Zero W’s. The
htop command is used to visually indicate the
number of processes distributed and also see
the overall workloads.

The testing ran on Python 2.7 with the
external MPI4PY module as a workload-
intensive program, which basically continues
to compute large prime numbers and display
the run time of execution. The controller
measures the status on all active Pi Zeroes as
well as the Raspberry Pi 3B over SSH.

Initially, a single-core Pi Zero W took a mere
2.46 minutes, a lengthy amount of waiting
time. Whereas a four-core Raspberry Pi 3B
took 1.42 minutes, much faster response and
execution speed time. The results that were
done however were not consistent for many
reasons. The distribution between master and
slaves was random, meaning there would be a
slight performance issue if a process has
more workload than another. Another reason
that may cause a disruption comes from the
SSH connections of nodes, in particular the
controller as it uses the hostname to carry out
the distribution of processes via SSH.

Table 1 Individual node average run time results

Test Unit Run Time

Raspberry Pi Zero
W (1 Core)

00:02:46 minutes

Raspberry Pi 3B
(4 Cores)

00:01:42 minutes

Table 1 shows the time required to run the
module by each node individually. With all
four Pi Zeroes attached to the controller, the
average results were determined to be
roughly ± 55 seconds. This experiment shows
that clustering Raspberries would increase the
computing performance compared to running
a unit individually.

5. Conclusion

In conclusion, the small-sized and affordable
Raspberry Pi allows computing enthusiasts to
conduct research on parallel computing
anywhere while also benefiting from the
programming tools used by today’s industry
standards. The ClusterHAT allows the
bridging connections between the Pi Zeroes
and the Raspberry Pi 3B. Clustering
Raspberries is proven to improve computing

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

14

performance and ensure availability when one
or more nodes are offline.

References

Barney, B. (2021, Decemeber 2). Message
Passing Interface (MPI). Retrieved
from Lawrence Livermore National
Laboratory: https://hpc-
tutorials.llnl.gov/mpi/

ClusterCTRL - Setup Control. (2021,

November 12). Retrieved from
Cluster CTRL:
https://clusterctrl.com/setup-control

ClusterCTRL - Setup Software. (2021,

December 2). Retrieved from
Cluster CTRL:
https://clusterctrl.com/setup-
software

Docker Overview. (2021, December 2).

Retrieved from Docker
Documentation:
https://docs.docker.com/get-
started/overview/

Hidayat, T. (2019, August 19). Fungsi

Bridge dalam Jaringan Komputer,
Jenis dan Cara Kerjanya.
 Retrieved from
Universitas Djuanda Bogor:
https://www.unida.ac.id/teknologi/
artikel/fungsi-bridge-dalam-
jaringan- komputer-jenis-dan-cara-
kerjanya.html

L., D. (2019, August 6). The Missing

ClusterHat Tutorial. Retrieved
from Medium:
https://medium.com/@dhuck/the-
missing-clusterhat-tutorial-
45ad2241d738

Lithmee. (2018, September 8). Difference

Between Cluster and Grid
Computing. Retrieved from Pediaa:
https://pediaa.com/difference-
between-cluster-and-grid-
computing/#Cluster%20Computing

Parallel Computing Backgrounder. (2021,

December 2). Retrieved from
Intel.com:
https://www.intel.com/pressroom/kit
s/upcrc/ParallelComputing_backgro
under.p df

Riyadi, H. (2019, September 6). Pengertian

NAT Beserta Fungsi dan Cara Kerja
NAT dalam Jaringan Komputer.
Retrieved from NesabaMedia:
https://www.nesabamedia.com/peng
ertian-fungsi-dan-cara-kerja-nat/

Smith, N. (2016, August). ClusterHAT

Review for the Raspberry Pi Zero.
Retrieved from Climbers.net:
https://climbers.net/sbc/clusterhat-
review-raspberry-pi-zero/

Stringfellow, A. (2017, September 25).

When to Use (and Not to Use)
Asynchronous Programming: 20
Pros Reveal the Best Use Cases.
Retrieved from Stackify.

What is a Docker Swarm? (2021, December

2). Retrieved from Sumo Logic:
https://www.sumologic.com/glossar
y/docker-swarm/

Liaison Journal of Engineering ISSN 2809-5243

 Vol. 1, No. 1, Desember 2021

15

