AMERICAN SIGN LANGUAGE DETECTION WITH CONVOLUTIONAL NEURAL NETWORK

Normalisa¹, Sunarto Usna², Sudjiran³

¹Computer Science Engineering, International University Liaison Indonesia, BSD ^{2,3}Sistem Informasi, STMIK Jakarta STI&K, Jakarta Selatan, Indonesia Email: ¹normalisa@iuli.ac.id, ²sunartousna@gmail.com, ³ontosenosudjiran@gmail.com

ABSTRACT. Humans are social creatures, one of the ways humans socialize is by communicating with each other. Socializing is needed for humans to be able to adapt, recognize and be able to move towards their environment. However, this is an obstacle for the deaf community, even though the presence of sign language can help to socialize, but not everyone can understand it. This study will propose the detection of sign language so that it is easy to understand, the sign language that will be detected is American Sign Language (ASL). American Sign Language is used because it is quite well known for its use in terms of sign language research and will use the Machine Learning method, namely Convolutional Neural Network (CNN). The use of this method itself was chosen because it has a high level of accuracy, in this study the results of the resulting accuracy rate were 99.89%. Keyword: Communication, ASL, CNN, Detection, Accuracy.

1. INTRODUCTION

Communication is a crucial thing to be able to live between humans, disturbed communication will be an obstacle and even misunderstanding. The deaf community in communicating has used sign language which is a bit difficult because not everyone understands it. Therefore, this study will detect sign language into ordinary human language so that it can be easily understood.

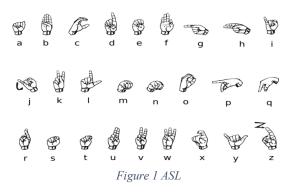
2. REVIEW

a. Related Work

Table 1 Review

Ν	Author	Title	Met	Res
0.			hod	ult
	I Putu	Classification	CNN	97%
[1	Iduar	of Sign		
]	Perdana, I	Language		
	Ketut	Numbers		
	Gede	Using the		
	Darma	CNN Method		
	Putra, I			

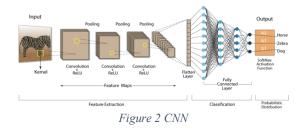
	Putu Arya			
	Dharmaa			
	d			
[2	Abul	CNN based	CNN	99.8
]	Abbas	feature		2%
	Barbhuiy	extraction and		
	a & Ram	classification		
	Kumar	for sign		
	Karsh &	language		
	Rahul			
	Jain			
[3	G.Ananth	Deep	CNN	92.8
]	a Rao,	Convolutional		8%
	K.Syamal	Neural		
	а,	Networks for		
	P.V.V.Ki	Sign		
	shore,	Language		
	A.S.C.S.S	Recognition		
	astry			
[4	Basel	CONVOLUT	CNN	96.6
]	Dabwan	IONAL		8%
		NEURAL		
		NETWORK-		
		BASED		
		SIGN		
		LANGUAGE		
		TRANSLATI		
5.5		ON SYSTEM	CDDJ	100
[5	A R	SIBI (Sistem	CNN	100
]	Syulistyo	Isyarat		%
	*, D S	Bahasa		


				1
	Hormans	Indonesia)		
	yah and P	translation		
	Y Saputra	using		
		Convolutional		
		Neural		
		Network		
		(CNN)		
[6	Oscar	Deep Sign:	CNN	15%
1		Hybrid CNN-	CININ	and
]	Koller,	•	-	
	Sepehr	HMM for	HM	38%
	Zargaran,	Continuous	М	up to
	Hermann	Sign		13.3
	Ney,	Language		%
	Richard	Recognition		
	Bowden	-		
[7	Lionel	Sign	CNN	91.7
1	Pigou,	Language		%
L	Sander	Recognition		, ,
	Dieleman	using		
	. Pieter-	Convolutional		
	,			
	Jan Kin Jamua	Neural		
	Kinderma	Networks		
	ns,			
	Benjamin			
	Schrauwe			
	n			
[8	Ahmed	Egyptian Sign	CNN	90%
Ĵ	Adel	Language	&	
-	Gomaa	Recognition	LST	
	Elhagry,	Using CNN	М	
	Rawan	and LSTM		
	Gla	unu 201111		
	Elrayes			
[9	Kaustubh	Sign	CNN	
1	Jadhav,	Language	C1111	
1	Abhishek			
		Recognition		
	Jaiswal,	Using Neural		
	Abbas	Network		
	Munshi,			
	Mayuresh			
	Yerendek			
	ar			
[1	Adithya	A Deep	CNN	94.7
0]	V.*a,	Convolutional		%
-	Rajesh	Neural		
	R.a	Network		
		Approach for		
		Static Hand		
		Gesture		
F 1	9 6	Recognition		05.2
[1		Real-Time	CNN	95.2
	Sarfaraz		o na d	%
1]	Masood,	Sign	and	, 0
	Masood, Adhyan	Language	RNN	, .
	Masood, Adhyan Srivastav	Language Gesture		, ,
	Masood, Adhyan	Language		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Masood, Adhyan Srivastav	Language Gesture		
	Masood, Adhyan Srivastav a, Harish	Language Gesture (Word)		

	and Musheer Ahmad	from Video Sequences Using CNN and RNN		
[1 2]	Vivek Bheda and N. Dianna Radpour	Using Deep Convolutional Networks for Gesture Recognition in American Sign Language	CNN	82.5 %

b. Theory

ASL


The data set used is a data set from kaggle.com where in the ASL dataset there is a total of 27,455 with 785 rows. However, the image shown is of course the same as in figure 1.

CNN

Machine learning is a subset of Artificial Intelligence, the difference is that Machine Learning will use even more data. One of the methods in machine learning is CNN (Convolutional Neural Network).

Convolutional Neural Network (CNN) is an architecture that can recognize information intended to predict an object. CNN's ability to recognize objects differs from the position of the input data. This ability makes Convolutional Neural Network (CNN) currently widely used in various fields [13].

PYTHON

Python programming language will be used in processing data from the dataset and using the CNN method for detection. This programming language is very familiar to use among Machine Learning users.

3. METHODOLOGY

The data processing process starts from importing data, the data displayed will be like Figure 3. Then the next step is to process the signal image so that it can be read clearly.

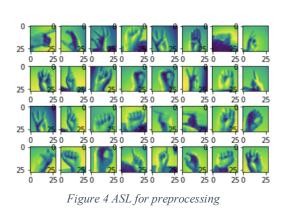



Figure 3 head data of ASL

DETECTION

The following steps are to start the detection, the image displayed is an example of the signal letter b (figure 5) which will be changed to gray (figure 6) and then after detection, it will produce as shown in Figure 7.

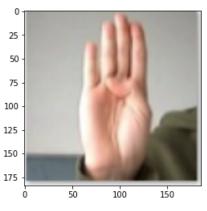
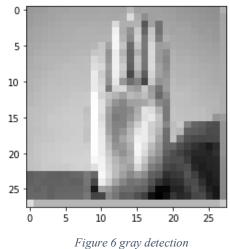
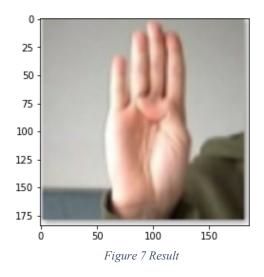
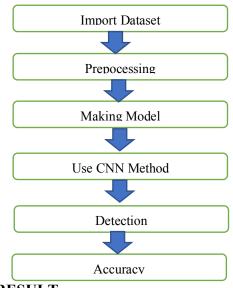




Figure 5 color detection



rigure

in more detail the detection steps to be described as follows;

4. RESULT

From the steps that have been described previously, that there are steps for making a model as shown in the image below. This model is needed in the application of the CNN method to the dataset.

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 28, 28, 75)	750
batch_normalization (BatchNo	(None, 28, 28, 75)	300
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 14, 14, 75)	0
conv2d_1 (Conv2D)	(None, 14, 14, 50)	33800
dropout (Dropout)	(None, 14, 14, 50)	0
batch_normalization_1 (Batch	(None, 14, 14, 50)	200
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None, 7, 7, 50)	0
conv2d_2 (Conv2D)	(None, 7, 7, 25)	11275
batch_normalization_2 (Batch	(None, 7, 7, 25)	100
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None, 4, 4, 25)	0
flatten (Flatten)	(None, 400)	0
dense (Dense)	(None, 512)	205312
dropout_1 (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 24)	12312
Total params: 264,049		

Total params: 264,049 Trainable params: 263,749 Non-trainable params: 300

Figure 8 model

After the modeling step, when calculating the level of accuracy, the results are as shown below.

Epoch 1/20
858/858 [
uracy: 0.9488
Epoch 2/20
858/858 [
uracy: 0.9195
Epoch 3/20
858/858 [===================================
uracy: 0.8161
Epoch 4/20
858/858 [===================================
uracy: 0.9547
Epoch 5/20
858/858 [===================================
uracy: 0.9501
Epoch 6/20
858/858 [===================================
uracy: 0.9426
Epoch 7/20
858/858 [===================================
uracy: 0.9578
Epoch 8/20
858/858 [===================================
uracy: 0.9664
Epoch 9/20
858/858 [===================================
uracy: 0.9527
Epoch 10/20
858/858 [========================] - 48 4ms/step - loss: 0.0035 - accuracy: 0.9991 - val_loss: 0.1498 - val_acc
uracy: 0.9650
Epoch 11/20
858/858 [
Broch 12/20
BB0/858 [s====================================
050/050 [
Enoch 13/20
<pre>Epoch 13/20 858/858 [===================================</pre>
uracy: 0.9663
Enoch 14/20
858/858 [===================================
uracy: 0.9409
Booch 15/20
558/558 [===================================
uracy: 0.8837
Epoch 16/20
858/858 [===================================
uracy: 0.9515
Epoch 17/20
83/858 [=>] = ETA: 2s = loss: 0.0028 = accuracy: 0.9989
Einen Omeren er er er lit

Figure 9 accuracy result

5. CONCLUSION

Based on the explanation above, that this study uses data taken from the American Sign Language (ASL) dataset, research using different datasets will of course produce different levels of accuracy. Likewise, the steps taken and the results obtained are still in the form of images, text or video captures. This research uses the ASL dataset and the steps are preprocessing and modeling then changing the color of the image and the detection results obtained are in the form of text and signal images, getting a very high level of accuracy, namely 99.89%.

REFERENCE

- I. P. I. Perdana, I. K. G. D. Putra and I. P. A. Dharmaadi, "Classification of Sign Language Numbers Using the CNN Method," *JITTER*, vol. 2, no. Vol. 2, No. 3 Desember 2021, 2021.
- [2] A. A. Barbhuiya1, R. K. Karsh and R. Jain, "CNN based feature extraction and classification for sign language," *Springer*, 2020.
- [3] G. Rao, K.Syamala, P.V.V.Kishore and A.S.C.S.Sastry, "Deep Convolutional Neural Networks for Sign Language Recognition," *SPACES*, 2018.
- [4] B. Dabwan, "CONVOLUTIONAL NEURAL NETWORK-BASED SIGN LANGUAGE TRANSLATION SYSTEM," *International Journal of Engineering, Science and Mathematics,* vol. 9, no. 6, pp. 47-57, 2020.
- [5] A. R. Syulistyo*, D. S. Hormansyah and P. Y. Saputra, "SIBI (Sistem Isyarat Bahasa Indonesia) translation using Convolutional Neural Network (CNN)," *The 1st Annual Technology, Applied Science and Engineering Conference,* 2020.
- [6] O. Koller, S. Zargaran, H. Ney and R. Bowden, Deep Sign: Hybrid CNN-HMM for Continuous Sign Language Recognition, Germany: RWTH Aachen University, 2016.
- [7] S. D. P.-J. K. B. S. Lionel Pigou, "Sign Language Recognition using Convolutional Neural Networks".
- [8] A. A. G. Elhagry and R. G. Elrayes, "Egyptian Sign Language Recognition Using CNN and LSTM," Comp. & Sys. Dept., Faculty of Engineering, Zagazig University, Egypt.
- [9] K. JADHAV, A. JAISWAL, A. MUNSHI and M. YERENDEKAR, "SIGN LANGUAGE RECOGNITION USING NEURAL

NETWORK," Department of Electronics and Telecommunication Engineering K.C. College of Engineering & Management studies & Research, vol. 1, no. 1, 2020.

- [10] A. V.*a and R. R.a, "A Deep Convolutional Neural Network Approach for Static Hand Gesture Recognition Gesture Recognition," *Procedia Computer Science*, 2020.
- [11] S. Masood, A. Srivastava, H. C. Thuwal and M. Ahmad, "Real-Time Sign Language Gesture (Word) Recognition from Video Sequences Using CNN and RNN," *Springer*, 2018.
- [12] V. Bheda and . . Radpour, "Using Deep Convolutional Networks for Gesture Recognition in American Sign Language," *Department of Computer Science, Department of Linguistics.*
- [13] J. W. G. Putra, "Pengenalan Konsep Pembelajaran Mesin dan Deep Learning," *Research Gate*, 2020.